Search results for "Copper nanowires"

showing 3 items of 3 documents

Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water

2020

Contamination of water with nitrate ions is a significant problem that affects many areas of the world. The danger from nitrates is not so much their toxicity, rather low, as their transformation into nitrites and in particular into nitrosamines, substances considered to be a possible carcinogenic risk. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/l. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performed in situ. Electrochemical detection is certainly among the best techniques to obtain the above requirements. In…

Nitrate ionMaterials scienceInorganic chemistrychemistry.chemical_element02 engineering and technology01 natural sciencesChlorideAnalytical ChemistryIonCopper nanowireschemistry.chemical_compoundNitrateSettore ING-IND/17 - Impianti Industriali MeccaniciChlorinemedicineSolubilityDetection limitPrecipitation (chemistry)010401 analytical chemistry021001 nanoscience & nanotechnologyCopperNanostructures0104 chemical sciencesElectrochemical gas sensorGalvanic depositionSettore ING-IND/23 - Chimica Fisica ApplicataElectrochemical sensorchemistry0210 nano-technologyWater contaminationmedicine.drugTalanta
researchProduct

Vertical standing copper nanowires for electrochemical sensor of nitrate in water

2020

Nitrogen, in the forms of nitrate (NO3-), nitrite, or ammonium, is a nutrient needed for plant growth and it is a common constituent of fertilizers [1]. When fertilizers are overused, they contaminate the ground water and then the food chain. For humans, a low level of nitrate is advisable because it increases the blood flow and has a good effect on both blood pressure and cardiovascular system. On the contrary, a high concentration of nitrate can be dangerous for humans. Nitrate ions undergoes different chemical transformations (i.e. to nitrite ions by Escherichia coli) producing different nitrogen-based compound such as nitrite ions, nitric oxide and ammonia [2]. These chemicals lead to s…

CadmiumInorganic chemistryOxideelectrochemical sensorchemistry.chemical_elementNitrogenNitric oxideElectrochemical sensor nitrate ions water pollutionchemistry.chemical_compoundAmmoniaSettore ING-IND/23 - Chimica Fisica Applicatanitrate ionsNitratechemistrySettore ING-IND/17 - Impianti Industriali MeccaniciAmmoniumNitriteCopper nanowiresquality of water2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
researchProduct

Influence Of The Electrical Parameters On The Fabrication Of Copper Nanowires Into Anodic Alumina Templates

2009

Abstract Metallic copper nanowires have been grown into the pores of alumina membranes by electrodeposition from an aqueous solution containing CuSO 4 . and H 3 BO 3 at pH 3. In order to study the influence of the electrical parameters on growth and structure of nanowires, different deposition potentials (both in the region where hydrogen evolution reaction is allowed or not) and voltage perturbation modes (constant potential or unipolar pulsed depositions) were applied. In all cases, pure polycrystalline Cu nanowires were fabricated into template pores, having lengths increasing with the total deposition time. These nanowires were self-standing, because they retain their vertical orientati…

Copper nanowireMaterials scienceAnodic alumina membraneNanowireGeneral Physics and Astronomychemistry.chemical_elementNanotechnologySurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsCopperGrain sizeSurfaces Coatings and Filmschemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicataCopper nanowires; Anodic alumina membranes; Electrodeposition; Self-standing structureschemistryChemical engineeringElectrodepositionAluminium oxideCrystalliteVapor–liquid–solid methodSelf-standing structuresDissolutionDeposition (law)
researchProduct